Effects of synchronizing the rate of dietary energy and nitrogen release in diets with a similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep

Author:

Sinclair L. A.,Garnsworthy P. C.,Newbold J. R.,Buttery P. J.

Abstract

SUMMARYThe effects of synchronizing dietary energy and nitrogen supply in diets with a similar carbohydrate composition on microbial protein synthesis and rumen fermentation were examined in sheep. Two diets were formulated to be either synchronous (diet S) or asynchronous (diet A) for the hourly release of nitrogen (N) and energy to the rumen. Diet S contained (g/kg) 425 g wheat straw, 400 g winter barley, 150 grapeseed meal and 25 g minerals/vitamins and diet A contained 505 g wheat straw, 458.5 g winter barley, 11·5 g urea and 25 g minerals/vitamins. Both diets were fed at the rate of 1 kg/day in four equal portions, to four cannulated sheep, in two periods in a change-over design. Rumen ammonia concentrations followed the predicted hourly trend in N degradation with a peak 1 h after feeding of 10 mM for diet S and 16 mM for diet A before falling within 3 h of feeding to 4 ITIM in animals fed either diet. Rumen volatile fatty acid (VFA) concentrations followed the cyclical trend predicted by stoichiometric equations, whilst rumen VFA ratios were more stable than predicted in animals fed either diet. The observed content of rumen degradable protein and organic matter truly degraded in the rumen was similar for both diets. The increase in total CHO digested in the rumen observed with diet A (427 g/kg DM) compared with diet S (364 g/kg DM) can be attributed to the greater content of starch in the asynchronous diet, which had a high degradability. The efficiency of microbial protein synthesis (g N/kg OM truly degraded in the rumen) was 11–20% greater in animals fed the synchronous diet (S) than the asynchronous diet (A). It is concluded that microbial N production was more efficient when dietary energy and N supply were synchronized.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3