Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle

Author:

Liu Sijia,Yu Zhongtang,Zhong Huiyue,Zheng Nan,Huws Sharon,Wang Jiaqi,Zhao Shengguo

Abstract

AbstractBackgroundRuminants can utilize urea as a dietary nitrogen source owing to their ability to recycle urea-N back to the rumen where numerous ureolytic bacteria hydrolyze urea into ammonia, which is used by numerous bacteria as their nitrogen source. Rumen ureolytic bacteria are the key microbes making ruminants the only type of animals independent of pre-formed amino acids for survival, thus having attracted much research interest. Sequencing-based studies have helped gain new insights into ruminal ureolytic bacterial diversity, but only a limited number of ureolytic bacteria have been isolated into pure cultures or studied, hindering the understanding of ureolytic bacteria with respect to their metabolism, physiology, and ecology, all of which are required to effectively improve urea-N utilization efficiency.ResultsWe established and used an integrated approach, which include urease gene (ureC) guided enrichment plus in situ agarose microsphere embedding and cultivation under rumen-simulating conditions, to isolate ureolytic bacteria from the rumen microbiome. We optimized the dilutions of the rumen microbiome during the enrichment, single-cell embedding, and then in situ cultivation of microsphere-embedded bacteria using dialysis bags placed in rumen fluid. Metabonomic analysis revealed that the dialysis bags had a fermentation profile very similar to the simulated rumen fermentation. In total, we isolated 404 unique strains of bacteria, of which 52 strains were selected for genomic sequencing. Genomic analyses revealed that 28 strains, which were classified into 12 species, contained urease genes. All these ureolytic bacteria represent new species ever identified in the rumen and represented the most abundant ureolytic species. Compared to all the previously isolated ruminal ureolytic species combined, the newly isolated ureolytic bacteria increased the number of genotypically and phenotypically characterized ureolytic species by 34.38% and 45.83%, respectively. These isolated strains have unique genes compared to the known ureolytic strains of the same species indicating their new metabolic functions, especially in energy and nitrogen metabolism. All the ureolytic species were ubiquitous in the rumen of six different species of ruminants and were correlated to dietary urea metabolism in the rumen and milk protein production. We discovered five different organizations of urease gene clusters among the new isolates, and they had varied approaches to hydrolyze urea. The key amino acid residues of the UreC protein that potentially plays critical regulatory roles in urease activation were also identified.ConclusionsWe established an integrated methodology for the efficient isolation of ureolytic bacteria, which expanded the biological resource of crucial ureolytic bacteria from the rumen. These isolates play a vital role in the incorporation of dietary nitrogen into bacterial biomass and hence contribute to ruminant growth and productivity. Moreover, this methodology can enable efficient isolation and cultivation of other bacteria of interest in the environment and help bridge the knowledge gap between genotypes and phenotypes of uncultured bacteria.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3