Climate change impact on the distribution of Tossa jute using maximum entropy and educational global climate modelling

Author:

Mollah Tanjinul Hoque,Shishir SharminORCID,Momotaz ,Rashid Md. Shahedur

Abstract

AbstractTossa (Corchorus olitorius L.) is a significant cash crop, cultivated commercially in the lower flood plain of Bangladesh. The climatic regimes in Bangladesh are changing as well as the world does. However, this species is threatened by climate change. Occurrences of data on threatened and endangered species are frequently sparse which makes it difficult to analyse the species suitable habitat distribution using various modelling approaches. The current paper used maximum entropy (Maxent) and educational global climate model (EdGCM) modelling to predict and conserve the suitable habitat distributions for Tossa species in Bangladesh to the year 2100. Nine environmental variables, 239 occurrence data and two Representative Concentration Pathway scenarios (RCP4.5 and RCP8.5) were used for the Maxent modelling to project the impact of climate change on the Tossa distributions. Furthermore, the EdGCM was used to study the climatic space suitability for the Tossa species in the context of Bangladesh. Both of the climatic scenarios were used for the prediction to the year 2100. The Maxent model performed better than random for the Tossa species with a high AUC value of 0.86. Under the RCP scenarios, the Maxent model predicted habitat reduction for RCP4.5 is 2%, RCP8.5 is 9% and EdGCM is 10.2% from the current localities. The predictive modelling approach presented here is promising and can be applied to other important species for conservation planning, monitoring and management, especially those under the threat of extinction due to climate change.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3