Comparison of machine learning and deep learning models for evaluating suitable areas for premium teas in Yunnan, China

Author:

Wei Guiyu,Zhou RuliangORCID

Abstract

Background: Tea is an important economic crop in Yunnan, and the market price of premium teas such as Lao Banzhang is significantly higher than ordinary teas. For planting lands to promote, the tea industry to develop and minority lands’ economies to prosper, it is vital to evaluate and analyze suitable areas for premium tea cultivation. Methods: Climate, terrain, soil, and green cropping system in the premium tea planting areas were used as evaluation variables. The suitability of six machine learning models for predicting suitable areas of premium teas were evaluated. Result: FA+ResNet demonstrated the best performance with an accuracy score of 0.94 and a macro-F1 score of 0.93. The suitable areas of premium teas were mainly located in the southern catchment of LancangJiang River, south-central part of Dehong, a few areas in the mid-west of Lincang, central scattered areas of Pu’er, most of the southern western part of Xishuangbanna and the southern edge of Honghe. Annual mean temperature, annual mean precipitation, mist belt, annual mean relative humidity, soil type and elevation were the key components in evaluating the suitable areas of premium teas in Yunnan.

Funder

National Natural Science Foundation of China-Yunnan Joint Fund

Major Science and Technology Projects in Yunnan Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference62 articles.

1. Developing a Set of Indicators to Measure Sustainability of Tea Cultivating Farms in Rize Province, Turkey;UH Shamsheer;Ecological Indicators,2018

2. Analysis of the world tea production and trade pattern and its inspiration;X. Wu;Tea in Fujian,2019

3. The overlap of suitable tea plant habitat with Asian elephant (Elephus maximus) distribution in southwestern China and its potential impact on species conservation and local economy;Y. Dai;Environmental Science and Pollution Research,2022

4. Development Status and Analysis of Tea Industry in Yunnan;M Zhao;Chinese Journal of Tropical Agriculture,2019

5. Strategies to improve the performance of Yunnan tea industry in poverty alleviation with precision;H. Chen;Tea in Fujian,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3