The carbon footprint of UK sheep production: current knowledge and opportunities for reduction in temperate zones

Author:

JONES A. K.,JONES D. L.,CROSS P.

Abstract

SUMMARYLivestock production is a significant source of methane (CH4) and nitrous oxide (N2O) emissions globally. In any sheep-producing nation, an effective agricultural greenhouse gas (GHG) mitigation strategy must include sheep-targeted interventions. The most prominent interventions suited to sheep systems are reviewed in the current paper, with a focus on farm-level enteric CH4and soil N2O emissions. A small number of currently available interventions emerge which have broad consensus on their mitigation potential. These include breeding to increase lambing percentages and diet formulation to minimize nitrogen excretion. The majority of interventions still require significant research and development before deployment. Research into the efficacy of interventions such as incorporation of biochar is in its infancy, while for others such as dietary supplements, successes in isolated studies now need to be replicated in long-term field trials under a range of conditions. Enhancing understanding of underlying biological processes will allow capitalization of interventions such as vaccination against rumen methanogenesis and pasture drainage. Many interventions cannot be recommended at a regional or national scale because, either, their mitigation potential is inextricably linked to soil and weather conditions in the locality of use, or their use is restricted to more intensive, closely managed systems. Distilling the long list of interventions to produce an effective farm-level mitigation strategy must involve: accounting for all GHG fluxes and interactions, identifying complimentary sets of additive interventions, and accounting for baseline emissions and current practice. Tools such as whole farm GHG models and marginal abatement cost curves are crucial in the development of tailored, practical sheep farm GHG mitigation strategies.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3