Author:
SARDA X.,DIQUELOU S.,ABDALLAH M.,NESI N.,CANTAT O.,LE GOUEE P.,AVICE J. C.,OURRY A.
Abstract
SUMMARYSulphur (S) is one of the six main macroelements required to sustain the growth of plants. Sources include soil, fertilizer and atmospheric deposition, which has been reduced by 85% over the last three decades. Risks of S deficiencies are now recognized in high S-demanding species such as Brassica napus L. With the aims of evaluating the risk of excessive or insufficient fertilization and identifying robust relationships that may be used as plant S status indicators, 57 commercial crops of oilseed rape were selected among contrasting soils and along a rainfall gradient that may affect soil S availability. Cultivation practices were investigated and the S and nitrogen (N) concentrations of soil, senescing leaves, stems and seeds were analysed. Despite an excessive organic N supply and large variation in S supply (from 0 to 112 kg S/ha), principal component analysis using 43 parameters indicated that seed yield was poorly related to N and S fertilization rates. While the N and protein-N concentrations in seeds were inversely related to oil and glucosinolate concentrations, they were linked to S and sulphate (SO42−) accumulation in the seeds. Sulphate concentrations in senescing leaves, stems or seeds could be deduced from total S concentrations, as they were positively and highly correlated. Sulphate accounted for on average 0·69 of total S in senescing leaves with minimum and maximum values of 0·007 and 0·94, which revealed conditions of limited and excess supply of S, respectively. This high variation of SO42− concentration in leaves can be interpreted as the result of its mobilization triggered by S deficiency, but cannot be used alone as an indicator of plant S status. A comparison with plants grown in controlled conditions under different S supplies suggests that the intensity of S starvation affects N metabolism, leading to NO3− (nitrate) accumulation. It is further suggested that dual evaluation of SO42− and NO3− concentrations in senescing leaves could be used at the vegetative stage as a field indicator to adjust S fertilization.
Publisher
Cambridge University Press (CUP)
Subject
Genetics,Agronomy and Crop Science,Animal Science and Zoology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献