Case-based reasoning and system design: An integrated approach based on ontology and preference modeling

Author:

Romero Bejarano Juan Camilo,Coudert Thierry,Vareilles Elise,Geneste Laurent,Aldanondo Michel,Abeille Joël

Abstract

AbstractThis paper addresses the fulfillment of requirements related to case-based reasoning (CBR) processes for system design. Considering that CBR processes are well suited for problem solving, the proposed method concerns the definition of an integrated CBR process in line with system engineering principles. After the definition of the requirements that the approach has to fulfill, an ontology is defined to capitalize knowledge about the design within concepts. Based on the ontology, models are provided for requirements and solutions representation. Next, a recursive CBR process, suitable for system design, is provided. Uncertainty and designer preferences as well as ontological guidelines are considered during the requirements definition, the compatible cases retrieval, and the solution definition steps. This approach is designed to give flexibility within the CBR process as well as to provide guidelines to the designer. Such questions as the following are conjointly treated: how to guide the designer to be sure that the requirements are correctly defined and suitable for the retrieval step, how to retrieve cases when there are no available similarity measures, and how to enlarge the research scope during the retrieval step to obtain a sufficient panel of solutions. Finally, an example of system engineering in the aeronautic domain illustrates the proposed method. A testbed has been developed and carried out to evaluate the performance of the retrieval algorithm and a software prototype has been developed in order to test the approach. The outcome of this work is a recursive CBR process suitable to engineering design and compatible with standards. Requirements are modeled by means of flexible constraints, where the designer preferences are used to express the flexibility. Similar solutions can be retrieved even if similarity measures between features are not available. Simultaneously, ontological guidelines are used to guide the process and to aid the designer to express her/his preferences.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3