A knowledge-enabled approach for user experience-driven product improvement at the conceptual design stage

Author:

Li Jun,Guo XinORCID,Zhang Kai,Zhao WuORCID

Abstract

Abstract Improving existing products plays a vital role in enhancing customer satisfaction and coping with changes in the market. Analyzing user experience (UX) to find the deficiencies of existing products and establishing improved schemes is the key to UX-driven product improvement, especially at the conceptual design stage. Although some tools used in conceptual design, such as requirements analysis and knowledge reasoning, have advanced recently, they lack targeted goals and sufficient efficiency in identifying insufficient product attributes and improving existing functions and structures. The challenge lies in considering the influence imposed on design activities by the original product features (including attributes, functions, and structure). In this study, a knowledge-enabled approach and framework that integrates the conceptual design process, online reviews for UX, and knowledge is proposed to support product improvement. Specifically, a decision-making algorithm based on UX analysis is proposed to identify to-be-improved product attributes. Then, through optimizing the previous knowledge application model from knowledge requirement transformation, knowledge modeling, and knowledge reasoning, a smart knowledge reasoning model is established to push knowledge for functional solving of the to-be-improved attributes. A knowledge configuration method is used to modify product features to generate an improved scheme. To demonstrate the feasibility of the proposed approach, a case study of improving an agricultural sprayer is conducted. Through discussion, this study can help to regulate design activities for product improvement, enhance data and knowledge application, and promote divergent thinking during scheme modification.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3