Design change prediction based on social media sentiment analysis

Author:

Koh Edwin C.Y.ORCID

Abstract

AbstractThe use of artificial intelligence (AI) techniques to uncover customer sentiment is not uncommon. However, the integration of sentiment analysis with research in design change prediction remains an untapped potential. This paper presents a method that uses social media sentiment analysis to identify opportunities for design change and the set of product components affected by the change. The method builds on natural language processing to determine change candidates from textual data and uses dependency modeling to reveal direct and indirect change propagation paths arising from the change candidates. The method was applied in a case example where 3665YouTubecomments on a diesel engine were analyzed. Based on the results, two engine components were recommended for design change with six others predicted as likely to be affected through change propagation. The findings suggest that the method can be used to aid decision quality in product planning through a better understanding of the change impact associated with the opportunities identified.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Auto-DSM: Using a large language model to generate a design structure matrix;Natural Language Processing Journal;2024-09

2. Post-Adoption Stress and Support Needs of Families Relative to Neurodevelopmental Disorders and Disability: A Parent Survey;Occupational Therapy in Mental Health;2024-08-07

3. AI-artifacts in engineering change management – a systematic literature review;Research in Engineering Design;2024-01-29

4. Using AI-Enabled Divergence and Convergence Patterns as a Quantitative Artifact in Design Education;Journal of Mechanical Design;2024-01-29

5. Sentimental Analysis on IMDb Movies Review using BERT;2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3