Toward a quantitative description of large-scale neocortical dynamic function and EEG

Author:

Nunez Paul L.

Abstract

A general conceptual framework for large-scale neocortical dynamics based on data from many laboratories is applied to a variety of experimental designs, spatial scales, and brain states. Partly distinct, but interacting local processes (e.g., neural networks) arise from functional segregation. Global processes arise from functional integration and can facilitate (top down) synchronous activity in remote cell groups that function simultaneously at several different spatial scales. Simultaneous local processes may help drive (bottom up) macroscopic global dynamics observed with electroencephalography (EEG) or magnetoencephalography (MEG).A local/global dynamic theory that is consistent with EEG data and the proposed conceptual framework is outlined. This theory is neutral about properties of neural networks embedded in macroscopic fields, but its global component makes several qualitative and semiquantitative predictions about EEG measures of traveling and standing wave phenomena. A more general “metatheory” suggests what large-scale quantitative theories of neocortical dynamics may be like when more accurate treatment of local and nonlinear effects is achieved.The theory describes the dynamics of excitatory and inhibitory synaptic action fields. EEG and MEG provide large-scale estimates of modulation of these synaptic fields around background levels. Brain states are determined by neuromodulatory control parameters. Purely local states are dominated by local feedback gains and rise and decay times of postsynaptic potentials. Dominant local frequencies vary with brain region. Other states are purely global, with moderate to high coherence over large distances. Multiple global mode frequencies arise from a combination of delays in corticocortical axons and neocortical boundary conditions. Global frequencies are identical in all cortical regions, but most states involve dynamic interactions between local networks and the global system. EEG frequencies may involve a “matching” of local resonant frequencies with one or more of the many, closely spaced global frequencies.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

Cited by 371 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3