A Comprehensive Interaction in Multiscale Multichannel EEG Signals for Emotion Recognition

Author:

Guo Yiquan1,Zhang Bowen1,Fan Xiaomao1,Shen Xiaole1,Peng Xiaojiang1ORCID

Affiliation:

1. College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China

Abstract

Electroencephalogram (EEG) is the most preferred and credible source for emotion recognition, where long-short range features and a multichannel relationship are crucial for performance because numerous physiological components function at various time scales and on different channels. We propose a cascade scale-aware adaptive graph convolutional network and cross-EEG transformer (SAG-CET) to explore the comprehensive interaction between multiscale and multichannel EEG signals with two novel ideas. First, to model the relationship of multichannel EEG signals and enhance signal representation ability, the multiscale EEG signals are fed into a scale-aware adaptive graph convolutional network (SAG) before the CET model. Second, the cross-EEG transformer (CET), is used to explicitly capture multiscale features as well as their correlations. The CET consists of two self-attention encoders for gathering features from long-short time series and a cross-attention module to integrate multiscale class tokens. Our experiments show that CET significantly outperforms a vanilla unitary transformer, and the SAG module brings visible gains. Our methods also outperform state-of-the-art methods in subject-dependent tasks with 98.89%/98.92% in accuracy for valence/arousal on DEAP and 99.08%/99.21% on DREAMER.

Funder

National Natural Science Foundation of China

Stable Support Projects for Shenzhen Higher Education Institutions

Natural Science Foundation of Top Talent of SZTU

Basic and Applied Basic Research Project of Guangdong Province

Special subject on Agriculture and Social Development, Key Research and Development Plan in Guangzhou

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3