Computation and cognition: issues in the foundations of cognitive science

Author:

Pylyshyn Zenon W.

Abstract

AbstractThe computational view of mind rests on certain intuitions regarding the fundamental similarity between computation and cognition. We examine some of these intuitions and suggest that they derive from the fact that computers and human organisms are both physical systems whose behavior is correctly described as being governed by rules acting on symbolic representations. Some of the implications of this view are discussed. It is suggested that a fundamental hypothesis of this approach (the “proprietary vocabulary hypothesis”) is that there is a natural domain of human functioning (roughly what we intuitively associate with perceiving, reasoning, and acting) that can be addressed exclusively in terms of a formal symbolic or algorithmic vocabulary or level of analysis.Much of the paper elaborates various conditions that need to be met if a literal view of mental activity as computation is to serve as the basis for explanatory theories. The coherence of such a view depends on there being a principled distinction between functions whose explanation requires that we posit internal representations and those that we can appropriately describe as merely instantiating causal physical or biological laws. In this paper the distinction is empirically grounded in a methodological criterion called the “cognitive impenetrability condition.” Functions are said to be cognitively impenetrable if they cannot be influenced by such purely cognitive factors as goals, beliefs, inferences, tacit knowledge, and so on. Such a criterion makes it possible to empirically separate the fixed capacities of mind (called its “functional architecture”) from the particular representations and algorithms used on specific occasions. In order for computational theories to avoid being ad hoc, they must deal effectively with the “degrees of freedom” problem by constraining the extent to which they can be arbitrarily adjusted post hoc to fit some particular set of observations. This in turn requires that the fixed architectural function and the algorithms be independently validated. It is argued that the architectural assumptions implicit in many contemporary models run afoul of the cognitive impenetrability condition, since the required fixed functions are demonstrably sensitive to tacit knowledge and goals. The paper concludes with some tactical suggestions for the development of computational cognitive theories.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

Reference149 articles.

1. Dennett D. C. (in press) True believers: the intentional strategy and why it works. To appear in a volume of the 1979 Herbert Spencer Lectures on Scientific Explanation, Oxford Univ. Press. [ZP]

2. Searle J. (1979) Notes on artificial intelligence. Unpublished manuscript. [ZP]

3. Controlled and automatic human information processing: I. Detection, search, and attention.

Cited by 952 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3