Author:
Hanson Stephen José,Burr David J.
Abstract
AbstractConnectionist models provide a promising alternative to the traditional computational approach that has for several decades dominated cognitive science and artificial intelligence, although the nature of connectionist models and their relation to symbol processing remains controversial. Connectionist models can be characterized by three general computational features: distinct layers of interconnected units, recursive rules for updating the strengths of the connections during learning, and “simple” homogeneous computing elements. Using just these three features one can construct surprisingly elegant and powerful models of memory, perception, motor control, categorization, and reasoning. What makes the connectionist approach unique is not its variety of representational possibilities (including “distributed representations”) or its departure from explicit rule-based models, or even its preoccupation with the brain metaphor. Rather, it is that connectionist models can be used to explore systematically the complex interaction between learning and representation, as we try to demonstrate through the analysis of several large networks.
Publisher
Cambridge University Press (CUP)
Subject
Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology
Reference236 articles.
1. Williams R. J. , & Zipser D. (1988) A learning algorithm for continually running fully recurrent neural networks. Technical Report ICS Report 8805, University of California at San Diego. {aSJH}
2. Modeling Brain Function
3. FUNCTION OF THE PARIETAL ASSOCIATIVE AREA 7 AS REVEALED FROM CELLULAR DISCHARGES IN ALERT MONKEYS
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献