Dense Sample Deep Learning

Author:

Hanson Stephen José1,Yadav Vivek2,Hanson Catherine3

Affiliation:

1. Rutgers Brain Imaging Center and Psychology Department, Rutgers University, Newark, NJ 07102, U.S.A. jose@rubic.rutgers.edu

2. Rutgers Brain Imaging Center, Rutgers University, Newark, NJ 07102, U.S.A. viveky23.bits.hyd@gmail.com

3. Center for Molecular and Behavioral Neuroscience and Rutgers Brain Imaging Center, Rutgers University, Newark, NJ 07102, U.S.A. cat@rubic.rutgers.edu

Abstract

Abstract Deep learning (DL), a variant of the neural network algorithms originally proposed in the 1980s (Rumelhart et al., 1986), has made surprising progress in artificial intelligence (AI), ranging from language translation, protein folding (Jumper et al., 2021), autonomous cars, and, more recently, human-like language models (chatbots). All that seemed intractable until very recently. Despite the growing use of DL networks, little is understood about the learning mechanisms and representations that make these networks effective across such a diverse range of applications. Part of the answer must be the huge scale of the architecture and, of course, the large scale of the data, since not much has changed since 1986. But the nature of deep learned representations remains largely unknown. Unfortunately, training sets with millions or billions of tokens have unknown combinatorics, and networks with millions or billions of hidden units can't easily be visualized and their mechanisms can't be easily revealed. In this letter, we explore these challenges with a large (1.24 million weights VGG) DL in a novel high-density sample task (five unique tokens with more than 500 exemplars per token), which allows us to more carefully follow the emergence of category structure and feature construction. We use various visualization methods for following the emergence of the classification and the development of the coupling of feature detectors and structures that provide a type of graphical bootstrapping. From these results, we harvest some basic observations of the learning dynamics of DL and propose a new theory of complex feature construction based on our results.

Publisher

MIT Press

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3