On the effect of velvet structures on trailing edge noise: experimental investigation and theoretical analysis

Author:

Zhou PengORCID,Zhong SiyangORCID,Zhang XinORCID

Abstract

This study is inspired by the velvety structures on an owl's upper wing surface. Anechoic wind tunnel experiments were conducted to study the effect of the velvety structures on trailing edge noise as well as the boundary layer flow of a flat plate model. The tests were conducted in The Hong Kong University of Science and Technology low-speed wind tunnel, ultra-quiet noise injection test and evaluation device (UNITED). It was found that the trailing edge noise spectra are significantly modified by the velvety structures. In general, the velvety structures increase the low-frequency noise below a cross-over Strouhal number $St_c$ but reduce the spectral level at higher frequencies. The velvety surface also changes the boundary layer characteristics in terms of the boundary layer thickness, non-dimensional velocity distribution and turbulence distribution. Vortex shedding is suppressed by the velvety coating despite the blunt trailing edge. An analytic model is proposed for the trailing edge noise of a flat plate, including the effect of finite trailing edge thickness and velvety structures on the flat plate surface. The model uses the near wake distribution of the mean and fluctuating velocities in the streamwise direction as the input. The predictions, which require no empirical corrections, match well with the experiments for both the baseline and velvet-coated configurations. With a detailed non-dimensional analysis, this study proposes a potential aeroacoustic function of velvet structures, i.e. noise control through manipulation of boundary layer statistics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3