On Improving the Noise Reduction Performance of Trailing Edge Serrations by Extension

Author:

Sundeep Shivam1,Cantos Sinforiano1ORCID,Zhong Siyang2,Zhou Peng1

Affiliation:

1. Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China

2. Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China

Abstract

Trailing edge serration is an effective method to reduce broadband noise generation by an airfoil. However, the noise reduction performance can be significantly reduced when there is flow misalignment at the serration. This experimental study investigates the impact of a shift in the serration position downstream of the airfoil trailing edge on the noise reduction performance, referred to in this paper as serration extension. Experiments were performed on a 100-mm-chord NACA 0012 wing model with sawtooth trailing edge serrations. The serration performance was studied at 0° and 7° flap-down configurations at various angles of attack. The serrations with three different extension lengths of 5, 10, and 15 mm were tested and compared with the baseline case without extension. The emitted noise was measured with a phased microphone array. The results show a significant reduction in broadband high-frequency noise by extension under loading conditions. Particle image velocimetry measurements of root flow along the wall-normal plane reveal diminished crossflow across the serration after extension. Furthermore, the extensions cause an up-to-25% increase in the maximum lift coefficient and improved or unaltered lift-to-drag ratios.

Funder

Research Grants Council, University Grants Committee

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3