A two-fluid model for immersed granular avalanches with dilatancy effects

Author:

Montellà E.P.ORCID,Chauchat J.ORCID,Chareyre B.ORCID,Bonamy C.ORCID,Hsu T.J.ORCID

Abstract

When a deposited layer of granular material fully immersed in a liquid is suddenly inclined above a certain critical angle, it starts to flow down the slope. The initial dynamics of these underwater avalanches strongly depends on the initial volume fraction. If the granular bed is initially loose, i.e. looser than the critical state, the avalanche is triggered almost instantaneously and exhibits a strong acceleration, whereas for an initially dense granular bed, i.e. denser than the critical state, the avalanche's mobility remains low for some time before it starts flowing normally. This behaviour can be explained by a combination of geometrical granular dilatancy and pore pressure feedback on the granular media. In this contribution, a continuum formulation is presented and implemented in a three-dimensional continuum numerical model. The originality of the present model is to incorporate dilatancy as an elasto-plastic normal stress or pressure and not as a modification of the friction coefficient. This allows an explanation of the two different behaviours of initially loose and dense underwater avalanches. It also highlights the contribution from each depth-resolved variable in the strongly coupled transition to a flowing avalanche. The model compares favourably with existing experiments for the initiation of underwater granular avalanches. Results reveal the interplay between shear-induced changes of the granular stress and fluid pressure in the dynamics of avalanches. The characteristic time of the triggering phase is nearly independent of the local rheological parameters, whereas the initial drop in pore pressure and the surface velocity at steady state still strongly depend on them. Finally, the multidimensional capabilities of the model are illustrated for the two-dimensional Hele-Shaw configuration and some of the observed differences between one-dimensional simulations and experiments are clarified.

Funder

Strategic Environmental Research and Development Program

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3