Influence of Reynolds number on the dynamics of rigid, slender and non-axisymmetric fibres in channel flow turbulence

Author:

Alipour MobinORCID,De Paoli MarcoORCID,Soldati AlfredoORCID

Abstract

We investigate experimentally the dynamics of non-axisymmetric fibres in channel flow turbulence, focusing specifically on the importance of the fibre size relative to the flow scales. To this aim, we maintain the same physical size of the fibres and we increase the shear Reynolds number. Experiments are performed in the TU Wien Turbulent Water Channel for three values of shear Reynolds number, namely 180, 360 and 720. Fibres are slender – length to diameter ratio of 120 – rigid, curved and neutrally buoyant particles and their shape ranges from low curvature – almost straight fibres – to moderate curvature. In all cases, fibre size remains small compared with the channel height (${\leqslant }1.5\,\%$). Three-dimensional and time-resolved recordings of the laser-illuminated measurement region are obtained from four high-speed cameras and used to infer fibre dynamics. With the aid of multiplicative algebraic reconstruction techniques, fibre position, orientation, velocity and rotation rates are determined. Our measurements span over the half-channel height, from wall to centre, and allow a complete characterisation of the fibre dynamics in all regions of the flow. Specifically, we measure fibre preferential distribution and orientation. We observe that the fibre dynamics is always influenced by their curvature. Through a comparison between measurements of the near-wall dynamics of the fibres and the near-wall dynamics of the flow, we identify a causal relationship between fibre velocity and orientation, and the near-wall turbulence dynamics. Finally, we have been able to provide original measurements of the tumbling rate of the fibres, for which we report the influence of fibre curvature. We underline that our measurements confirm previous findings obtained in numerical and experimental works.

Funder

PRIN "Advanced computations and experiments in turbulent multiphase flows"

FSE S3 HEAD

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3