Abstract
We examine the motion in a shear flow at zero Reynolds number of particles with two planes of symmetry. We show that in most cases the rotational motion is qualitatively similar to that of a non-axisymmetric ellipsoid, and characterised by a combination of chaotic and quasiperiodic orbits. We use Kolmogorov–Arnold–Moser (KAM) theory and related ideas in dynamical systems to elucidate the underlying mathematical structure of the motion and thence to explain why such a large class of particles all rotate in essentially the same manner. Numerical simulations are presented for curved spheroids of varying centreline curvature, which are found to drift persistently across the streamlines of the flow for certain initial orientations. We explain the origin of this migration as the result of a lack of symmetries of the particle’s orientation orbit.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献