Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold

Author:

Vo QuocORCID,Tran TuanORCID

Abstract

Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the spreading behaviours of droplets on EWOD substrates with the range of applied voltage exceeding the saturation limit. We experimentally find that at the initial stage of spreading, the driving force at the contact line still follows the Young–Lippmann law even if the applied voltage is higher than the CAS voltage. We then theoretically establish the relation between the initial contact-line velocity and the applied voltage using the force balance at the contact line. We also find that the amplitude of capillary waves on the droplet surface generated by the contact line's initial motion increases with the applied voltage. We provide a working framework utilising EWOD with voltages beyond CAS by characterising the capillary waves formed on the droplet surface and their self-similar behaviours. We finally propose a theoretical model of the wave profiles taking into account the viscous effects and verify this model experimentally. Our results provide avenues to utilise the EWOD effect with voltages beyond the CAS threshold, and have strong bearing on emerging applications such as digital microfluidic and ink-jet printing.

Funder

Agency for Science, Technology and Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3