Wetting and evaporation behavior of dilute sodium dodecyl sulfate droplets on soft substrates under a direct current electric field

Author:

Jiang Biao,Xu Shuai,Lu Yingfa,Yu Yingsong

Abstract

AbstractWetting and evaporation behavior of dilute sodium dodecyl sulfate (SDS) droplets on planar polydimethylsiloxane (PDMS) surfaces under a direct current (DC) electric field were experimentally investigated. Two characteristic voltages—actuation voltage and saturation voltage were observed in the electrowetting of dilute SDS droplets on PDMS surfaces. It was found that for dilute SDS droplets with a fixed SDS concentration substrate elasticity has an obvious influence on actuation voltage, and saturation voltage increased with the increase of mass ratio of PDMS surfaces. SDS concentration was also found to obviously influence actuation voltage and saturation voltage when SDS concentration was in a certain range. For the case of evaporation of sessile dilute SDS droplets on PDMS surfaces with the application of a DC electric field, substrate elasticity, SDS concentration and the magnitude of applied voltage were all found to have an influence on the duration of CCR stage. Moreover, contact angle hysteresis for dilute SDS droplets on a planar PDMS 10:1 surface under different applied voltage was measured and it was found that the magnitude of applied voltage greatly influenced contact angle hysteresis, which also depends on SDS concentration and KCl concentration.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3