Active tail flexion in concert with passive hydrodynamic forces improves swimming speed and efficiency

Author:

Hang HaotianORCID,Heydari SinaORCID,Costello John H.ORCID,Kanso EvaORCID

Abstract

Fish typically swim by periodic bending of their bodies. Bending seems to follow a universal rule; it occurs at about one-third from the posterior end of the fish body with a maximum bending angle of about $30^{\circ }$ . However, the hydrodynamic mechanisms that shaped this convergent design and its potential benefit to fish in terms of swimming speed and efficiency are not well understood. It is also unclear to what extent this bending is active or follows passively from the interaction of a flexible posterior with the fluid environment. Here, we use a self-propelled two-link model, with fluid–structure interactions described in the context of the vortex sheet method, to analyse the effects of both active and passive body bending on the swimming performance. We find that passive bending is more efficient but could reduce swimming speed compared with rigid flapping, but the addition of active bending could enhance both speed and efficiency. Importantly, we find that the phase difference between the posterior and anterior sections of the body is an important kinematic factor that influences performance, and that active antiphase flexion, consistent with the passive flexion phase, can simultaneously enhance speed and efficiency in a region of the design space that overlaps with biological observations. Our results are consistent with the hypothesis that fish that actively bend their bodies in a fashion that exploits passive hydrodynamics can at once improve speed and efficiency.

Funder

Office of Naval Research

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference82 articles.

1. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin

2. Hovering in oscillatory flows

3. Locomotion of a self-propulsive pitching plate in a quiescent viscous fluid;Wang;Proc. Inst. Mech. Engrs C,2020

4. The aerodynamics of hovering insect flight. VI. Lift and power requirements;Ellington;Phil. Trans. R. Soc. Lond. B,1984

5. Fang, F. 2016 Hydrodynamic interactions between self-propelled flapping wings. PhD thesis, New York University.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3