Turbulent entrainment in viscoelastic fluids

Author:

Abreu HugoORCID,Pinho Fernando T.ORCID,da Silva Carlos B.ORCID

Abstract

Direct numerical simulations (DNS) of turbulent fronts spreading into an irrotational flow region are used to analyse the turbulent entrainment mechanism for viscoelastic fluids. The simulations use the FENE-P fluid model and are initiated from DNS of isotropic turbulence with Weissenberg and turbulence Reynolds numbers varying in the ranges $1.30 \le Wi \le 3.46$ and $206 \le Re_{\lambda }^{0} \le 404$, respectively. The enstrophy dynamics near the turbulent/non-turbulent interface (TNTI) layer, that separates regions of turbulent and irrotational flow, includes a new mechanism – the viscoelastic production – caused by the interaction between the vorticity field and the polymer stresses. This term can be a sink or a source of enstrophy in the turbulent core region of the flow, depending on the Weissenberg number, and contributes to the initial growth of the enstrophy in the viscous superlayer, together with the viscous diffusion, which is the only mechanism present for Newtonian fluids. For low and moderate Weissenberg numbers the scaling of the TNTI layer is similar to the scaling of TNTI layers for Newtonian fluids, but this is no longer the case at high Weissenberg numbers where the enstrophy tends to be concentrated into thin vortex sheets instead of vortex tubes. Finally, it is shown that the substantial decrease of the entrainment rates observed in turbulent flows of viscoelastic fluids, compared with Newtonian fluids, is caused by a reduction of the surface area and fractal dimension of the irrotational boundary, originated by the depletion of ‘active’ scales of motion in the fluid solvent caused by the viscoelasticity.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3