On the dynamics of vortex–droplet co-axial interaction: insights into droplet and vortex dynamics

Author:

Sharma ShubhamORCID,Singh Awanish PratapORCID,Basu SaptarshiORCID

Abstract

Interaction of droplets with vortical structures is ubiquitous in nature, ranging from raindrops to a gas turbine combustor. In this work, we elucidate the mechanism of co-axial interaction of a droplet with a vortex ring of different circulation strengths ( $\varGamma = 45\text {--}161\ \textrm {cm}^2\ \textrm {s}^{-1}$ ). We focus on both the droplet and the vortex dynamics, which evolve in a spatio-temporal fashion during different stages of the interaction, as in a two-way coupled system. Vortex rings of varying circulation strengths are generated by injecting a slug of water into a quiescent water-filled chamber. Experimental techniques such as high-speed particle image velocimetry, planner laser-induced fluorescence imaging and high-speed shadowgraphy are used in this work. In the droplet dynamics, different regimes of interaction are identified, including deformation (regime-I), stretching and engulfment (regime-II) and breakup of the droplet (regime-III). Each interaction regime is explained using existing theoretical models that closely match the experimental data. In the vortex dynamics, we compare the interaction's effect on different characteristics of the vortex rings, such as pressure and the vorticity distribution, circulation strength, total energy and enstrophy variation with time. It is found that the interaction leads to a reduction in these parameters.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3