The interaction between droplets and the vortex ring after a shock wave

Author:

Abstract

To elucidate the characteristics of droplet breakup induced by a shock wave and vortex ring behind the shock, experiments were conducted with water and various glycerol mixtures under different shock Mach numbers. High-speed visualization system, pressure testing system, and laser particle analyzer were applied to record the interaction process between droplets and a vortex ring after a shock wave. The results show that two stages of interaction are identified, including droplet-shock wave interaction and droplet-vortex ring interaction. Small clusters of droplets separated from the mother droplet will exhibit “white dot” and “swing arms” structures when subjected to vortical flow. At high shock Mach numbers, which generate strong circulation, the centrifugal force from rotation will cause droplet deformation and fragmentation. However, droplets with higher viscosity impede the stretching effect of the vortical flow, resulting in less deformation and fragmentation. Our data could provide valuable insights into droplet breakup in internal combustion engines and other industrial operations.

Funder

National Postdoctoral Program for Innovative Talents

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3