Abstract
Vertical chutes and pipes are a common component of many industrial apparatus used in the transport and processing of powders and grains. Here, a typical arrangement is considered first in which a hopper at the top feeds the chute and a converging outlet at the bottom controls the mass flux. Discrete element method (DEM) simulations reveal that steady uniform flow is only observed for intermediate flow rates, with jamming and unsteady waves dominating slow flows and non-uniform wall detachment in fast flow. Focusing on the steady uniform regimes, a progressive idealisation is carried out by matching with equivalent DEM simulations in periodic cells. These investigations justify a one-dimensional continuum modelling of the problem and provide key test data. Novel exact solutions are derived here for vertical flow using a linear version of the ‘
$\mu(I),\varPhi(I)$
-rheology’, for which the bulk friction
$\mu$
and steady solid volume fraction
$\varPhi$
depend on the inertial number I. Despite not capturing the full nonlinear complexities, the solutions match important aspects of the DEM flow fields and reveal simple scaling laws linking many quantities of interest. In particular, this study clearly demonstrates a linear relation between the chute width and the size of the shear zones at the walls. This finding contrasts with previous works on purely quasi-static flow, which instead predict a roughly constant shear zone width, a difference which implies that finite-size effects are minimal for the inertial flows studied here.
Funder
Leverhulme Trust
Natural Environment Research Council
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献