Analyses of slow high-concentration flows of granular materials

Author:

SAVAGE S. B.

Abstract

A theory intended for slow, dense flows of cohesionless granular materials is developed for the case of planar deformations. By considering granular flows on very fine scales, one can conveniently split the individual particle velocities into fluctuating and mean transport components, and employ the notion of granular temperature that plays a central role in rapid granular flows. On somewhat larger scales, one can think of analogous fluctuations in strain rates. Both kinds of fluctuations are utilized in the present paper. Following the standard continuum approach, the conservation equations for mass, momentum and particle translational fluctuation energy are presented. The latter two equations involve constitutive coefficients, whose determination is one of the main concerns of the present paper. We begin with an associated flow rule for the case of a compressible, frictional, plastic continuum. The functional dependence of the flow rule is chosen so that the limiting behaviours of the resulting constitutive relations are consistent with the results of the kinetic theories developed for rapid flow regimes. Following Hibler (1977) and assuming that there are fluctuations in the strain rates that have, for example, a Gaussian distribution function, it is possible to obtain a relationship between the mean stress and the mean strain rate. It turns out, perhaps surprisingly, that this relationship has a viscous-like character. For low shear rates, the constitutive behaviour is similar to that of a liquid in the sense that the effective viscosity decreases with increasing granular temperature, whereas for rapid granular flows, the viscosity increases with increasing granular temperature as in a gas. The rate of energy dissipation can be determined in a manner similar to that used to derive the viscosity coefficients. After assuming that the magnitude of the strain-rate fluctuations can be related to the granular temperature, we obtain a closed system of equations that can be used to solve boundary value problems. The theory is used to consider the case of a simple shear flow. The resulting expressions for the stress components are similar to models previously proposed on a more ad hoc basis in which quasi-static stress contributions were directly patched to rate-dependent stresses. The problem of slow granular flow in rough-walled vertical chutes is then considered and the velocity, concentration and granular temperature profiles are determined. Thin boundary layers next to the vertical sidewalls arise with the concentration boundary layer being thicker than the velocity boundary layer. This kind of behaviour is observed in both laboratory experiments and in granular dynamics simulations of vertical chute flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 316 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3