Dynamic coupling between carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial isothermal particles

Author:

Yang WenwuORCID,Zhang Yi-Zhao,Wang Bo-FuORCID,Dong YuhongORCID,Zhou QuanORCID

Abstract

We investigate the dynamic couplings between particles and fluid in turbulent Rayleigh–Bénard (RB) convection laden with isothermal inertial particles. Direct numerical simulations combined with the Lagrangian point-particle mode were carried out in the range of Rayleigh number $1\times 10^6 \le {Ra}\le 1 \times 10^8$ at Prandtl number ${Pr}=0.678$ for three Stokes numbers ${St_f}=1 \times 10^{-3}$ , $8 \times 10^{-3}$ and $2.5 \times 10^{-2}$ . It is found that the global heat transfer and the strength of turbulent momentum transfer are altered a small amount for the small Stokes number and large Stokes number as the coupling between the two phases is weak, whereas they are enhanced a large amount for the medium Stokes number due to strong coupling of the two phases. We then derived the exact relation of kinetic energy dissipation in the particle-laden RB convection to study the budget balance of induced and dissipated kinetic energy. The strength of the dynamic coupling can be clearly revealed from the percentage of particle-induced kinetic energy over the total induced kinetic energy. We further derived the power law relation of the averaged particles settling rate versus the Rayleigh number, i.e. $S_p/(d_p/H)^2{\sim} Ra^{1/2}$ , which is in remarkable agreement with our simulation. We found that the settling and preferential concentration of particles are strongly correlated with the coupling mechanisms.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3