Abstract
The well-known thermal capillary wave theory, which describes the capillary spectrum of the free surface of a liquid film, does not reveal the transient dynamics of surface waves, e.g. the process through which a smooth surface becomes rough. Here, a Langevin model is proposed that can capture this dynamics, goes beyond the long-wave paradigm which can be inaccurate at the nanoscale, and is validated using molecular dynamics simulations for nanoscale films on both planar and cylindrical substrates. We show that a scaling relation exists for surface roughening of a planar film and the scaling exponents belong to a specific universality class. The capillary spectra of planar films are found to advance towards a static spectrum, with the roughness of the surface
$W$
increasing as a power law of time
$W\sim t^{1/8}$
before saturation. However, the spectra of an annular film (with outer radius
$h_0$
) are unbounded for dimensionless wavenumber
$qh_0<1$
due to the Rayleigh–Plateau instability.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献