Thermal fluctuations in capillary thinning of thin liquid films

Author:

Shah Maulik S.ORCID,van Steijn VolkertORCID,Kleijn Chris R.ORCID,Kreutzer Michiel T.ORCID

Abstract

Thermal fluctuations have been shown to influence the thinning dynamics of planar thin liquid films, bringing predicted rupture times closer to experiments. Most liquid films in nature and industry are, however, non-planar. Thinning of such films not just results from the interplay between stabilizing surface tension forces and destabilizing van der Waals forces, but also from drainage due to curvature differences. This work explores the influence of thermal fluctuations on the dynamics of thin non-planar films subjected to drainage, with their dynamics governed by two parameters: the strength of thermal fluctuations, $\unicode[STIX]{x1D703}$, and the strength of drainage, $\unicode[STIX]{x1D705}$. For strong drainage ($\unicode[STIX]{x1D705}\gg \unicode[STIX]{x1D705}_{tr}$), we find that the film ruptures due to the formation of a local depression called a dimple that appears at the connection between the curved and flat parts of the film. For this dimple-dominated regime, the rupture time, $t_{r}$, solely depends on $\unicode[STIX]{x1D705}$, according to the earlier reported scaling, $t_{r}\sim \unicode[STIX]{x1D705}^{-10/7}$. By contrast, for weak drainage ($\unicode[STIX]{x1D705}\ll \unicode[STIX]{x1D705}_{tr}$), the film ruptures at a random location due to the spontaneous growth of fluctuations originating from thermal fluctuations. In this fluctuations-dominated regime, the rupture time solely depends on $\unicode[STIX]{x1D703}$ as $t_{r}\sim -(1/\unicode[STIX]{x1D714}_{max})\ln (\sqrt{2\unicode[STIX]{x1D703}})^{\unicode[STIX]{x1D6FC}}$, with $\unicode[STIX]{x1D6FC}=1.15$. This scaling is rationalized using linear stability theory, which yields $\unicode[STIX]{x1D714}_{max}$ as the growth rate of the fastest-growing wave and $\unicode[STIX]{x1D6FC}=1$. These insights on if, when and how thermal fluctuations play a role are instrumental in predicting the dynamics and rupture time of non-flat draining thin films.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3