The motion of long bubbles in polygonal capillaries. Part 1. Thin films

Author:

Wong Harris,Radke C. J.,Morris S.

Abstract

Foam in porous media exhibits an unusually high apparent viscosity, making it useful in many industrial processes. The rheology of foam, however, is complex and not well understood. Previous pore-level models of foam are based primarily on studies of bubble flow in circular capillaries. A circular capillary, however, lacks the corners that characterize the geometry of the pores. We study the pressure–velocity relation of bubble flow in polygonal capillaries. A long bubble in a polygonal capillary acts as a leaky piston. The ‘piston’ is reluctant to move because of a large drag exerted by the capillary sidewalls. The liquid in the capillary therefore bypasses the bubble through the leaky corners at a speed an order higher than that of the bubble. Consequently, the pressure work is dissipated predominantly by the motion of the fluid and not by the motion of the bubble. This is opposite to the conclusion based on bubble flow in circular capillaries. The discovery of this new flow regime reconciles two groups of contradictory foam-flow experiments.Part 1 of this work studies the fluid films deposited on capillary walls in the limit Ca → 0 (Ca ≡ μU/σ, where μ is the fluid viscosity, U the bubble velocity, and σ the surface tension). Part 2 (Wong et al. 1995) uses the film profile at the back end to calculate the drag of the bubble. Since the bubble length is arbitrary, the film profile is determined here as a general function of the dimensionless downstream distance x. For 1 [Lt ] x [Lt ] Ca−1, the film profile is frozen with a thickness of order Ca2/3 at the centre and order Ca at the sides. For xCa−1, surface tension rearranges the film at the centre into a parabolic shape while the film at the sides thins to order Ca4/3. For x [Gt ] Ca−1, the film is still parabolic, but the height decreases as film fluid leaks through the side constrictions. For xCa−5/3, the height of the parabola is order Ca2/3. Finally, for x [Gt ] Ca−5/3, the height decreases as Ca1/4x−1/4.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

1. Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate.Acta Physicochimica URSS 17,42–54.

2. Reinelt, D. A. & Kraynik, A. M. 1990 On the shearing flow of foams and concentrated emulsions.J. Fluid Mech. 215,431–455.

3. Weatherburn, C. E. 1938 An Introduction to Riemannian Geometry and the Tensor Calculus .Cambridge University Press.

4. Holm, L. W. & Garrison, W. H. 1988 CO2 diversion with foam in an immiscible CO2 field project.SPE Reservoir Engng 3,112–118.

5. Kovscek, A. R. & Radke, C. J. 1994 Fundamentals of foam transport in porous media.In Foams: Fundamentals and Applications (ed. L. L. Schramm ),vol. 242, pp.115–163.Washington, DC. American Chemical Society.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3