A nonnative Palmer amaranth (Amaranthus palmeri) population in the Republic of South Africa is resistant to herbicides with different sites of action

Author:

Reinhardt CarlORCID,Vorster JuanORCID,Küpper AnitaORCID,Peter Falco,Simelane Adelaide,Friis StephanusORCID,Magson JacquesORCID,Aradhya ChandrashekarORCID

Abstract

AbstractPalmer amaranth (Amaranthus palmeri S. Watson) is not native to Africa. Based on the presence and persistence of A. palmeri populations, its invasive status in southern Africa is classified as “naturalized.” Globally, A. palmeri is one of the most troublesome weed species in several crops, including soybean [Glycine max (L.) Merr.], maize (Zea mays L.), and cotton (Gossypium hirsutum L.). Certain populations of A. palmeri in various countries were reported to be resistant to herbicides with different sites of action (SOAs). Two biotypes of A. palmeri in the United States reportedly each have resistance to herbicides representing five different SOAs, and between them a total of eight different SOAs are involved. Resistance mechanisms in these biotypes involve target-site and/or non–target site resistance. Here we characterize a specific A. palmeri population that was found in the Douglas district in South Africa and showed resistance to various herbicide SOAs. Initially, this A. palmeri population was discovered in a glyphosate-tolerant cotton field, where it survived glyphosate treatment. Subsequently, greenhouse experiments were conducted to characterize this A. palmeri population for potential resistance to herbicides of additional SOAs, and molecular analyses were conducted to reveal the mechanisms of herbicide resistance. Results indicated resistance to chlorimuron-ethyl and glyphosate in this population, while <90% control (decreased sensitivity) was observed at the label rate for mesotrione, atrazine, saflufenacil, and S-metolachlor. However, glufosinate, tembotrione, acifluorfen, dicamba, 2,4-D, metribuzin, acetochlor, isoxaflutole, diflufenican, and pyroxasulfone were effective at controlling this population. This profiling of herbicide sensitivity has allowed development of programs to control and potentially minimize the spread of this weed. In addition, molecular analysis of EPSPS revealed the role of higher copy number as a mechanism for glyphosate resistance in this population and a Ser-653-Asn target-site mutation likely conferring resistance to the acetolactate synthase–inhibitor chlorimuron-ethyl. No known target-site mutations were identified for the protoporphyrinogen oxidase–inhibitor group.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference108 articles.

1. [HRAC] Herbicide Resistance Action Committee (2021) Home page. www.hracglobal.com. Accessed: August 20, 2021

2. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus);Patzoldt;Weed Sci,2007

3. Characterization of glufosinate resistance mechanisms in Eleusine indica;Jalaludin;Pest Manag Sci,2017

4. Palmer amaranth (Amaranthus palmeri) identification and documentation of ALS-resistance in Argentina.;Berger;Weed Sci,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3