Multiple resistance to EPSPS and ALS inhibitors in Palmer amaranth (Amaranthus palmeri) identified in Turkey

Author:

Kaya‐Altop Emine1ORCID,Jabran Khawar2ORCID,Pala Firat3ORCID,Mennan Husrev1ORCID

Affiliation:

1. Department of Plant Protection Ondokuz Mayis University, Faculty of Agriculture Samsun Turkey

2. Department of Plant Production and Technologies Nigde Omer Halisdemir University Nigde Turkey

3. Department of Plant Protection Siirt University, Faculty of Agriculture Siirt Turkey

Abstract

AbstractAmaranthus palmeri was first reported in Turkey in 2016, and an immediate heavy infestation of the weed was found in fruit orchards and summer crops such as maize, cotton, and sunflower. There have been farmers' complaints about the ineffective control of Palmer amaranth through the use of glyphosate and some sulfonylureas herbicides. Hence, this study aimed to determine the possible herbicide resistance evolution in Palmer amaranth against glyphosate and acetolactate synthase (ALS) herbicides. Seeds of 21 Palmer amaranth populations were collected from five provinces of Turkey where control problems with glyphosate and ALS inhibitors were reported in maize fields. Seeds of certain biotypes categorized as resistant or susceptible were grown to obtain the F2 generation. A single‐dose experiment determined the possible resistance to ALS inhibitors and glyphosate among the 21 populations. Of this, 18 populations were included in the subsequent dose–response experiments due to evident survival. Based on ED50 values from the dose–response experiment, SNU‐04 and ADN‐21 biotypes had the highest resistance index for glyphosate which was more than 7. The biotypes ADN‐21, OSM‐15, and DIR‐09 recorded the highest ED50 value with a resistance index of 9.21–10.35 after nicosulfuron application. Whereas, the biotypes SNU‐04, OSM‐15, and ADN‐21 were with the highest ED50 value and resistance index of 6.41–7.44, after the application of foramsulfuron + iodosulfuron methyl‐sodium. The increase in genomic 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS) copy number has been observed in suspected cases that have been accepted as the molecular basis for the development of resistance against glyphosate. The sequence alignment results for the ALS gene contained Ala122Val and Pro197Arg mutations related to target‐site resistance against ALS herbicides.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3