Abstract
AbstractTaylor–Couette flow is inevitably associated with the visually appealing toroidal vortices, waves, and spirals that are instigated by linear instability. The linearly stable regimes, however, pose a new challenge: do they undergo transition to turbulence and if so, what is its mechanism? Maretzke et al. (J. Fluid Mech., vol. 742, 2014, pp. 254–290) begin to address this question by determining the transient growth over the entire parameter space. They find that in the quasi-Keplerian regime, the optimal perturbations take the form of Taylor columns and that the maximum energy achieved depends only on the shear.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献