Comparison of advanced turbulence models for the Taylor-Couette flow

Author:

Malikov Zafar M., ,Nazarov Farrukh Kh.,Madaliev Murodil E., ,

Abstract

Swirling flows of fluids and gases are an integral part of many complex flows which are widely encountered in nature and technology. The working process of numerous technical devices (cyclones, vortex combustion chambers, air separators, gas and steam turbines, electric machines and generators, etc.) is generally determined by the laws of hydrodynamics and heat exchange of rotating flows. The problem of deriving general laws for a turbulent flow in the field of centrifugal forces provokes considerable scientific interest since it belongs to an underdeveloped field of hydromechanics. Therefore, mathematical modeling of swirling turbulent flows is still an urgent problem. In this paper, a comparative analysis of the advanced turbulence models for the Taylor -Couette flow is carried out. For this purpose, the linear turbulence models (SARC and SST-RC), the Reynolds stress method SSG/LRR-RSM-w2012, and a two-fluid model are used. The results obtained using these models are compared with each other and with known experimental data and direct numerical simulation results. The numerical results calculated with the use of turbulence models for the Taylor-Couette flow confirm that almost all the models adequately describe velocity profiles. However, they yield different turbulent viscosity values and, as a result, different friction coefficients. A comparison of the numerical results shows that the friction coefficient calculated using a two-fluid turbulence model is the closest to that obtained experimentally.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3