Role of slipstream instability in formation of counter-rotating vortex rings ahead of a compressible vortex ring

Author:

Dora C. L.,Murugan T.,De S.,Das Debopam

Abstract

AbstractCounter-rotating vortex rings (CRVRs) are observed to form ahead of a primary compressible vortex ring that is generated at the open end of a shock tube at sufficiently high Mach numbers. In most of the earlier studies, the embedded shock strength has been asserted as the cause for the formation of CRVRs. In the present study, particle image velocimetry (PIV) measurements and high-order numerical simulations show that CRVRs do not form in the absence of a Mach disk in the sonic under-expanded jet behind the primary vortex ring. Kelvin–Helmholtz-type shear flow instability of the slipstream originating from the triple point of the Mach disk and subsequent eddy pairing, as observed by Rikanati et al. (Phys. Rev. Lett., vol. 96, 2006, art. 174503) in shock-wave Mach reflection, is found to be responsible for CRVR formation. The growth rate of the slipstream in the present problem follows the model proposed by them. The parameters influencing the formation of CRVRs as well as their dynamics is investigated. It is found that the strength of the Mach disk and its duration of persistence results in an exit impulse that determines the number of CRVRs formed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

1. On density effects and large structure in turbulent mixing layers

2. Murugan, T.  & Das, D. 2007 Structure and acoustic characteristics of supersonic vortex rings. In FLUCOME 2007 (9th International Symposium on Fluid Control, Measurement and Visualization), pp. 16–19. Curran Associates, Inc.

3. Tracer particles and seeding for particle image velocimetry

4. On the implicit large eddy simulations of homogeneous decaying turbulence

5. Shock-Wave Mach-Reflection Slip-Stream Instability: A Secondary Small-Scale Turbulent Mixing Phenomenon

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3