The influence of harmonic wall motion on transitional boundary layers

Author:

Hack M. J. Philipp,Zaki Tamer A.

Abstract

AbstractThe influence of harmonic spanwise wall motion on bypass transition in boundary layers is investigated using direct numerical simulations. It is shown that the appropriate choice of the forcing parameters can achieve a substantial stabilization of the laminar flow regime. However, an increase of the forcing amplitude or period beyond their optimal values diminishes the stabilizing effect, and leads to breakdown upstream of the unforced case. For the optimal wall-oscillation parameters, the reduction in propulsion power substantially outweighs the power requirement of the forcing. The mechanism of transition delay is examined in detail. Analysis of the pre-transitional streaks shows that the wall oscillation substantially reduces their average amplitude, and eliminates the most energetic streaks. As a result, the secondary instabilities that precede breakdown to turbulence are substantially weakened – an effect demonstrated by linear stability analyses of flow fields from direct numerical simulations. The outcome is transition delay owing to a significant reduction in the frequency of occurrence of turbulent spots and a downstream shift in their average inception location. Finally, it is shown that the efficiency of the forcing can be further improved by replacing the sinusoidal time dependence of the wall oscillation with a square wave.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3