Transition induced by wall-normal vibration in flow around a flat plate with roughness

Author:

Huang WenlinORCID,Wang Zhiheng,Xiao DandanORCID,Xi Guang,Mao XueruiORCID

Abstract

The effects of wall-normal vibration on bypass transition in a boundary-layer flow over a flat plate with roughness elements in the form of circular cylinders are investigated using direct numerical simulations (DNS), linear Floquet analyses and dynamic mode decompositions (DMD). The vibration of the plate strengthens the streamwise vorticity, consequently enhancing the velocity streaks and reducing the critical Reynolds number for transition. A map is constructed to identify the coupling effect of the vibration amplitude and Reynolds number on transition. Among all investigated combinations of height and diameter of roughness, the critical Reynolds numbers at different vibration amplitude $A$ can be unified by a scaling function of $(1-10A)$ . Two instability modes are identified in the vibration-induced transition process: a wake mode immediately downstream of the roughness, related to the inviscid Kelvin–Helmholtz instability of the wall-normal shear in the wake; and a streak mode, in response to the spanwise shear of the streaky flow, occurring further downstream. The first one results in the generation of central hairpin vortices which then feed the second one. Further development of the streak instability leads to two arrays of hairpin vortices. Results from linear Floquet analyses and DMD further confirm the two modes of instability observed in DNS. A quantitative study suggests that the amplification of vibration-induced disturbance by the base shear dominates the production of streamwise vorticity and subsequently the hairpin vortices.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3