Author:
Haase A. Sander,Chapman S. Jonathan,Tsai Peichun Amy,Lohse Detlef,Lammertink Rob G. H.
Abstract
AbstractGraetz and Nusselt studied heat transfer between a developed laminar fluid flow and a tube at constant wall temperature. Here, we extend the Graetz–Nusselt problem to dense fluid flows with partial wall slip. Its limits correspond to the classical problems for no-slip and no-shear flow. The amount of heat transfer is expressed by the local Nusselt number $\mathit{Nu}_{x}$, which is defined as the ratio of convective to conductive radial heat transfer. In the thermally developing regime, $\mathit{Nu}_{x}$ scales with the ratio of position $\tilde{x}=x/L$ to Graetz number $\mathit{Gz}$, i.e. $\mathit{Nu}_{x}\propto (\tilde{x}/\mathit{Gz})^{-{\it\beta}}$. Here, $L$ is the length of the heated or cooled tube section. The Graetz number $\mathit{Gz}$ corresponds to the ratio of axial advective to radial diffusive heat transport. In the case of no slip, the scaling exponent ${\it\beta}$ equals $1/3$. For no-shear flow, ${\it\beta}=1/2$. The results show that for partial slip, where the ratio of slip length $b$ to tube radius $R$ ranges from zero to infinity, ${\it\beta}$ transitions from $1/3$ to $1/2$ when $10^{-4}<b/R<10^{0}$. For partial slip, ${\it\beta}$ is a function of both position and slip length. The developed Nusselt number $\mathit{Nu}_{\infty }$ for $\tilde{x}/\mathit{Gz}>0.1$ transitions from 3.66 to 5.78, the classical limits, when $10^{-2}<b/R<10^{2}$. A mathematical and physical explanation is provided for the distinct transition points for ${\it\beta}$ and $\mathit{Nu}_{\infty }$.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献