The morphodynamics of a swash event on an erodible beach

Author:

Zhu Fangfang,Dodd Nicholas

Abstract

AbstractA high-accuracy numerical solution, coupling one-dimensional shallow water and bed-evolution equations, with, for the first time, a suspended sediment advection equation, thereby including bed and/or suspended load, is used to examine two swash events on an initially plane erodible beach: the event of Peregrine & Williams (J. Fluid Mech., vol. 440, 2001, pp. 391–399) and that of a solitary wave approaching the beach. Equations are solved by the method of characteristics, and the numerical model is verified. Full coupling of suspended load to beach change for Peregrine & Williams (J. Fluid Mech., vol. 440, 2001, pp. 391–399) yields only slightly altered swash flows, depending on beach mobility and sediment response time; a series of similar final beach change patterns results for different beach mobilities. Suspended- and bed-load transport have distinct morphodynamical signatures. For the solitary wave a backwash bore is created (Hibberd & Peregrine, J. Fluid Mech., vol. 95, 1979, pp. 323–345). This morphodynamical bore propagates offshore initially, and leads to the creation of a beach bed step (Larson & Sunamura, J. Sedimentary Petrology, vol. 63, 1993, pp. 495–500), primarily due to bed-load transport. Its height is directly related to bed-load mobility, and also depends strongly on the bed friction coefficient. The shock dynamics of this bed step is explained and illustrated. Bed- and suspended-load mobilities are quantified using field data, and an attempt is made to relate predictions to measurements of single swash events on a natural beach. Average predicted bed change magnitudes across the swash are of the order of 2 mm, with maximum bed changes of up to approximately 10 cm at the bed step.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3