Analysis of dynamic wave model for unsteady flow and sediment transport in alluvial rivers

Author:

Li ZuisenORCID,Wei Ronghao,Zeng JianORCID,Ding Yun,Guo Yong

Abstract

The coupling interactions between flood propagation, sediment transport, and river morphology in alluvial rivers are mathematically described by the high-order dynamic wave model. The coupling capability of currently used dynamic wave models is systematically conducted. The results indicate that the propagation of a dynamic flood wave only depends on the Froude number, but is independent of the coupling of sediment transport and river mobility. Furthermore, based on the continuum hypothesis, the dynamic equations describing the motion of the active bed layer are obtained. A renewed dynamic wave model is established. Four families of asymptotic solutions to the eigenvalues of the renewed four-order hyperbolic system are obtained by means of the singular-perturbation technology. The results demonstrate that the interactions between flood propagation, sediment transport, and riverbed mobility are coupled. Propagation of the main dynamic flood wave and the dynamic sediment wave will be slower with the increasing deposition rate, but will be faster when the erosion intensity is enhanced. These mainly occur in the lower flow regime. In the process of deposition, the second dynamic flood wave and the dynamic bed wave will propagate both upward and downstream. Besides, the dynamic bed wave will propagate downstream and the second dynamic flood wave will only propagate upstream, regardless of the flow regime.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Joint Funds of Zhejiang Provincial Natural Science Foundation of China and Water Resources Department

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3