Author:
Dontsov E. V.,Peirce A. P.
Abstract
AbstractThe goal of this study is to analyse the steady flow of a Newtonian fluid mixed with spherical particles in a channel for the purpose of modelling proppant transport with gravitational settling in hydraulic fractures. The developments are based on a continuum constitutive model for a slurry, which is approximated by an empirical formula. It is shown that the problem under consideration features a two-dimensional flow and a boundary layer, which effectively introduces slip at the boundary and allows us to describe a transition from Poiseuille flow to Darcy’s law for high proppant concentrations. The expressions for both the outer (i.e. outside the boundary layer) and inner (i.e. within the boundary layer) solutions are obtained in terms of the particle concentration, particle velocity and fluid velocity. Unfortunately, these solutions require the numerical solution of an integral equation, and, as a result, the development of a proppant transport model for hydraulic fracturing based on these results is not practicable. To reduce the complexity of the problem, an approximate solution is introduced. To validate the use of this approximation, the error is estimated for different regimes of flow. The approximate solution is then used to calculate the expressions for the slurry flux and the proppant flux, which are the basis for a model that can be used to account for proppant transport with gravitational settling in a fully coupled hydraulic fracturing simulator.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献