Wake transition in the flow around a circular cylinder with a splitter plate

Author:

Serson Douglas,Meneghini Julio R.,Carmo Bruno S.,Volpe Ernani V.,Gioria Rafael S.

Abstract

AbstractA simple way to decrease the drag and oscillating lift forces in the flow around a circular cylinder consists of positioning a splitter plate in the wake, parallel to the flow. In this paper, the effect of the splitter plate on the wake dynamics, more specifically on the wake transition, is described in detail. First, two-dimensional and three-dimensional direct numerical simulations (DNS) using the spectral element method were used to observe the behaviour of the wake in the presence of the splitter plate. Then, a linear stability analysis based on the Floquet theory was performed in order to obtain information on how the splitter plate changes the instabilities that lead to wake transition. Simulations were carried out for several gaps between the splitter plate and the cylinder, with the Reynolds number varying in the range between 100 and 350, which corresponds to the wake transition in the flow around a circular cylinder. The results of the simulations showed a discontinuity in the Strouhal number curve that is consistent with the results available in the literature. The stability analysis showed how the splitter plate modifies the transition of the flow to a three-dimensional configuration. The splitter plate has a stabilizing effect on the flow for small gaps, delaying the appearance of three-dimensional structures to higher Reynolds numbers. Mode A and a quasi-periodic (QP) mode are observed for such small gaps. As the gap is increased the discontinuity in the Strouhal number curve also caused a clear change in the characteristics of the neutral stability curve, and the existence of an unstable period-doubling mode was observed. The onset characteristics of the unstable modes are analysed and discussed in depth.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3