Author:
Biferale L.,Lanotte A. S.,Scatamacchia R.,Toschi F.
Abstract
AbstractResults from direct numerical simulations (DNS) of particle relative dispersion in three-dimensional homogeneous and isotropic turbulence at Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\mathit{Re}}_{\lambda } \sim 300$ are presented. We study point-like passive tracers and heavy particles, at Stokes number $\mathit{St}=0.6,1$ and 5. Particles are emitted from localised sources, in bunches of thousands, periodically in time, allowing an unprecedented statistical accuracy to be reached, with a total number of events for two-point observables of the order of ${10^{11}}$. The right tail of the probability density function (PDF) for tracers develops a clear deviation from Richardson’s self-similar prediction, pointing to the intermittent nature of the dispersion process. In our numerical experiment, such deviations are manifest once the probability to measure an event becomes of the order of – or rarer than – one part over one million, hence the crucial importance of a large dataset. The role of finite-Reynolds-number effects and the related fluctuations when pair separations cross the boundary between viscous and inertial range scales are discussed. An asymptotic prediction based on the multifractal theory for inertial range intermittency and valid for large Reynolds numbers is found to agree with the data better than the Richardson theory. The agreement is improved when considering heavy particles, whose inertia filters out viscous scale fluctuations. By using the exit-time statistics we also show that events associated with pairs experiencing unusually slow inertial range separations have a non-self-similar PDF.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference90 articles.
1. Relative velocity of inertial particles in turbulent flows
2. Presence of a Richardson’s regime in kinematic simulations
3. Fokker–Planck equation with memory: the crossover from ballistic to diffusive processes in many-particle systems and incompressible media;Ilyin;Cond. Matter Phys.,2013
4. Atmospheric diffusion shown on a distance-neighbour graph
5. Stochastic Lagrangian models for two-particle relative dispersion in high-Reynolds number turbulence;Kurbanmuradov;Monte Carlo Meth. Applic.,1997
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献