Critical and near-critical reflections of near-inertial waves off the sea surface at ocean fronts

Author:

Grisouard NicolasORCID,Thomas Leif N.

Abstract

AbstractIn a balanced oceanic front, the possible directions of the group velocity vector for internal waves depart from the classic Saint Andrew’s cross as a consequence of sloping isopycnals and the associated thermal wind shear. However, for waves oscillating at the Coriolis frequency $f$, one of these directions remains horizontal, while the other direction allows for vertical propagation of energy. This implies the existence of critical reflections from the ocean surface, after which wave energy, having propagated from below, cannot propagate back down. This is similar to the reflection of internal waves, propagating in a quiescent medium, from a bottom that runs parallel to the group velocity vector. We first illustrate this phenomenon with a series of linear Boussinesq numerical experiments on waves with various frequencies, ${\it\omega}$, exploring critical (${\it\omega}=f$), forward (${\it\omega}>f$), and backward (${\it\omega}<f$) reflections. We then conduct the nonlinear equivalents of these simulations. In agreement with the classical case, backward reflection inhibits triadic resonances and does not exhibit prominent nonlinear effects, while forward reflection shows strong generation of harmonics that radiate energy away from the surface. Surprisingly though, critical reflections are associated with oscillatory motions that extend down from the surface. These motions are not freely propagating waves but instead take the form of a cluster of non-resonant triads which decays with depth through friction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3