Affiliation:
1. Department of Physics, University of Toronto, Toronto, ON, Canada
Abstract
AbstractLinear theory for steady stratified flow over topography sets the range for topographic wavenumbers over which freely propagating internal waves are generated, and the radiation and breaking of these waves contribute to energy dissipation away from the ocean bottom. However, previous numerical work demonstrated that dissipation rates can be enhanced by flow over large scale topographies with wavenumbers outside of the lee wave radiative range. We conduct idealized 3D numerical simulations of steady stratified flow over 1D topography in a rotating domain and quantify vertical distribution of kinetic energy dissipation. We vary two parameters: the first determines whether the topographic obstacle is within the lee wave radiative range and the second, proportional to the topographic height, measures the degree of flow non-linearity. For certain combinations of topographic width and height, breaking occurs in pulses every inertial period, such that kinetic energy dissipation develops inertial periodicity. In these simulations, kinetic energy dissipation rates are also enhanced in the interior of the domain. In the radiative regime the inertial motions arise due to resonant wave-wave interactions. In the small wavenumber non-radiative regime, instabilities downstream of the obstacle can facilitate the generation and propagation of non-linearly forced inertial motions, especially as topographic height increase. In our simulations, dissipation rates for tall and wide non-radiative topography are comparable to those of radiative topography, even away from the bottom, which is relevant to the ocean where the topographic spectrum is such that wider abyssal hills also tend to be taller.
Publisher
American Meteorological Society
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献