Turbulence structure behind the shock in canonical shock–vortical turbulence interaction

Author:

Ryu Jaiyoung,Livescu Daniel

Abstract

AbstractThe interaction between vortical isotropic turbulence (IT) and a normal shock wave is studied using direct numerical simulation (DNS) and linear interaction analysis (LIA). In previous studies, agreement between the simulation results and the LIA predictions has been limited and, thus, the significance of LIA has been underestimated. In this paper, we present high-resolution simulations which accurately solve all flow scales (including the shock-wave structure) and extensively cover the parameter space (the shock Mach number, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}M_s$, ranges from 1.1 to 2.2 and the Taylor Reynolds number, ${\mathit{Re}}_{\lambda }$, ranges from 10 to 45). The results show, for the first time, that the turbulence quantities from DNS converge to the LIA solutions as the turbulent Mach number, $M_t$, becomes small, even at low upstream Reynolds numbers. The classical LIA formulae are extended to compute the complete post-shock flow fields using an IT database. The solutions, consistent with the DNS results, show that the shock wave significantly changes the topology of the turbulent structures, with a symmetrization of the third invariant of the velocity gradient tensor and ($M_s$-mediated) of the probability density function (PDF) of the longitudinal velocity derivatives, and an $M_s$-dependent increase in the correlation between strain and rotation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Amplification factors in shock–turbulence interactions: effect of shock thickness;Donzis;Phys. Fluids,2012

2. Ribner, H. S. 1954 Convection of a pattern of vorticity through a shock wave. NACA TR-1164.

3. An improved measure of strain state probability in turbulent flows

4. Compact finite difference schemes with spectral-like resolution

5. Experimental study of a normal shock/homogeneous turbulence interaction

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3