Nonlinear scaling of fluctuation kinetic energy for shock–vorticity wave interaction

Author:

Thakare Pranav1,Nair Vineeth1ORCID,Sinha Krishnendu1ORCID

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Bombay , Powai, Mumbai, Maharashtra 400076, India

Abstract

Turbulent kinetic energy (TKE) is a quantity of primary importance in shock–turbulence interaction (STI). Linear interaction analysis (LIA) serves as a theoretical method to predict the amplification of TKE in STI. LIA is constrained by low-amplitude fluctuations and neglects nonlinear effects. In this paper, we explore the nonlinear amplification of the kinetic energy of fluctuations in the interaction between a vorticity wave and a shock wave that serves as a building block flow for STI. A weakly nonlinear framework (WNLF) is introduced to analyze nonlinear effects in fluctuation kinetic energy (FKE) and identify the dominant physical mechanisms driving its amplification. The theoretical framework is validated through high-accuracy numerical simulations of shock–vorticity wave interactions. The simulation results are compared with the predictions derived from the WNLF for a range of intensities and inclinations of shock-upstream vorticity fluctuations at different Mach numbers, and WNLF is found to successfully scale the numerical data for FKE, thus confirming the validity and applicability of the framework. According to WNLF findings, at lower supersonic Mach numbers, the intermodal interaction between vorticity–vorticity modes is important, whereas the interaction between vorticity and acoustic modes becomes dominant at higher Mach numbers. Using the intermodal interactions, a model based on WNLF is proposed to predict TKE amplification in STI. In comparison to direct numerical simulation, the WNLF based model predicts the TKE amplification for moderate turbulent Mach number and lower supersonic flow Mach numbers. This is a significant improvement over the LIA results available in the literature.

Publisher

AIP Publishing

Reference28 articles.

1. Turbulence in supersonic flow;J. Aeronaut. Sci.,1953

2. Turbulence in Supersonic Flow

3. Cylindrical sound wave generated by shock-vortex interaction;AIAA J.,1985

4. F. K. Moore , “ Unsteady oblique interaction of a shock wave with a plane disturbance,” Technical Report NACA TR 1165 ( NACA, 1954), supersedes NACA TN 2879, 1953.

5. Direct numerical simulation of canonical shock/turbulence interaction;Phys. Fluids,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3