Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects

Author:

Beals ElizabethORCID,Kamita S. G.,Sacchi R.,Demmer E.,Rivera N.,Rogers-Soeder T. S.,Gertz E. R.,Van Loan M. D.,German J. B.,Hammock B. D.,Smilowitz J. T.,Zivkovic A. M.

Abstract

AbstractCVD and associated metabolic diseases are linked to chronic inflammation, which can be modified by diet. The objective of the present study was to determine whether there is a difference in inflammatory markers, blood metabolic and lipid panels and lymphocyte gene expression in response to a high-fat dairy food challenge with or without milk fat globule membrane (MFGM). Participants consumed a dairy product-based meal containing whipping cream (WC) high in saturated fat with or without the addition of MFGM, following a 12 h fasting blood draw. Inflammatory markers including IL-6 and C-reactive protein, lipid and metabolic panels and lymphocyte gene expression fold changes were measured using multiplex assays, clinical laboratory services and TaqMan real-time RT-PCR, respectively. Fold changes in gene expression were determined using the Pfaffl method. Response variables were converted into incremental AUC, tested for differences, and corrected for multiple comparisons. The postprandial insulin response was significantly lower following the meal containing MFGM (P< 0·01). The gene encoding soluble epoxide hydrolase (EPHX2) was shown to be more up-regulated in the absence of MFGM (P= 0·009). Secondary analyses showed that participants with higher baseline cholesterol:HDL-cholesterol ratio (Chol:HDL) had a greater reduction in gene expression of cluster of differentiation 14 (CD14) and lymphotoxinβreceptor (LTBR) with the WC+MFGM meal. The protein and lipid composition of MFGM is thought to be anti-inflammatory. These exploratory analyses suggest that addition of MFGM to a high-saturated fat meal modifies postprandial insulin response and offers a protective role for those individuals with higher baseline Chol:HDL.

Publisher

Cambridge University Press (CUP)

Subject

Endocrinology, Diabetes and Metabolism,Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3