ON SOLUTIONS TO NONHOMOGENEOUS ALGEBRAIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATION

Author:

LIAO LIANG-WEN,YE ZHUAN

Abstract

AbstractWe consider solutions to the algebraic differential equation $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}f^nf'+Q_d(z,f)=u(z)e^{v(z)}$, where $Q_d(z,f)$ is a differential polynomial in $f$ of degree $d$ with rational function coefficients, $u$ is a nonzero rational function and $v$ is a nonconstant polynomial. In this paper, we prove that if $n\ge d+1$ and if it admits a meromorphic solution $f$ with finitely many poles, then $$\begin{equation*} f(z)=s(z)e^{v(z)/(n+1)} \quad \mbox {and}\quad Q_d(z,f)\equiv 0. \end{equation*}$$ With this in hand, we also prove that if $f$ is a transcendental entire function, then $f'p_k(f)+q_m(f)$ assumes every complex number $\alpha $, with one possible exception, infinitely many times, where $p_k(f), q_m(f)$ are polynomials in $f$ with degrees $k$ and $m$ with $k\ge m+1$. This result generalizes a theorem originating from Hayman [‘Picard values of meromorphic functions and their derivatives’, Ann. of Math. (2)70(2) (1959), 9–42].

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On solutions of certain nonlinear delay-differential equations;Journal of Mathematical Analysis and Applications;2023-11

2. On Meromorphic Solutions of Nonlinear Complex Differential Equations;Analysis Mathematica;2023-09

3. On a theorem of Tumura–Clunie for a differential polynomial;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2022-11-22

4. Entire solutions of one certain type of nonlinear differential-difference equations;Rocky Mountain Journal of Mathematics;2022-08-01

5. Some results on the transcendental entire solutions of certain type of non-linear shift-differential equations;The Journal of Analysis;2022-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3